1、质料和要领
1.1 质料 接纳王惠芸等丈量和统计的中国人恒牙巨细形态数据扩大15倍制成的上颌第一磨牙准则模具(第四军医大学口腔医学院解剖生理教研室);PC机:IntelPentiumD3.0GHzCPU,2G内存,WindowsXP操纵系统;三维扫描仪(ThreeDimentionalSensingSystem,3DSS):彩色准则型(3DSSSTDCⅡ0601,上海数造机电科技有限公司,第四军医大学口腔医学院修复学教研室);GeomagicStudio8逆向工程软件(RaindropGeomagic,Inc);ANSYS10.0有限元剖析软件(ANSYS,Inc)
1.2 要领采
1.2.1 3DSS扫描 调解3DSS摄像头的高度与焦距,将15倍巨细的上颌第一磨牙准则模具置于摄像头前方约2m处,并与摄像头等高,以黑色非反光幕布为配景,运用3DSS自带的扫描软件3dsscolor分别对上颌第一磨牙准则模具的近远中面、颊舌面、牙合面及根面进行扫描,扫描得到的点云数据以。asc式样留存。
1.2.2 三维实体模型的建立
将扫描得到的6局部点云数据输入GeomagicStudio8逆向工程软件中,去除多余的杂点与坏点,运用Merge命令进行拼接,得到完整的上颌第一磨牙点云模型。利用点云通过逆向工程的方法重构模型,并对模型进行适当的修补及曲面优化,得到NURBS曲面,进而获得上颌第一磨牙CAD三维实体模型。运用scale命令将模型缩小15倍并进行正交化,得到位于坐标系中心、正常巨细的上颌第一磨牙三维实体模型,将此模型转变为片面模型,利用offset命令沿片面的法线偏向向外均匀扩展0.25mm得到牙周膜片面模型,通过形成NURBS曲面最终得到牙周膜CAD三维实体模型。按上述要领将牙周膜模型向外均匀扩展0.25mm得到硬骨板CAD三维实体模型。将上颌第一磨牙、牙周膜及硬骨板的三维实体模型输出为。iges式样文件分别进行留存。
1.2.3 三维有限元模型的建立
利用ANSYS10.0中的建模东西形成松质骨及密质骨(厚2mm)模型,将得到的实体模型输入到ANSYS10.0有限元剖析软件中,以腭根长12mm的位置作为冠根分界线,利用divide命令以劳动平面对模型进行切割,再运用布尔运算的overlap命令与glue命令对上述实体模型进行运算,得到包括上颌第一磨牙、牙周膜、硬骨板、松质骨及密质骨的完整三维模型。假设牙齿、硬骨板、松质骨及密质骨为连续、均匀、各向同性的线弹性质料;牙周膜假设为非线性的超弹性质料。受力时模型各界面之间不孕育产生相对滑动。凭据表1设定单位类型、尺寸及质料参数,进行网格划分,最终得到包括5个局部、4种质料的上颌第一磨牙及其牙周支持组织的非线性三维有限元模型。
1.2.4质料参数及牙周膜的非线性设定 模型各局部设定的单位类型、尺寸及质料参数如表1.牙周膜设定为非线性的超弹性模型。Vollmer等[2]研究得到牙周膜双线性应力应变曲线:牙周膜在应变量到达ε=7.5%之前,其应力应变关系体现在第一个应力应变区,此时弹性模量E1=0.05MPa;当应变量到达ε=7.5%之后,应力应变关系体现为第二个应力应变区,其弹性模量变为E2=0.22MPa.即牙周膜的应力应变不可线性关系,当应变量到达一定限度时(ε=7.5%),其力学性质产生转变,弹性模量增加,较小的应变量即会孕育产生较大的应力。模型柏松比μ=0.30.凭据MooneyRivlin形式本构模型[3]进行拟合,得到牙周膜的双参数超弹性模型:
凭据公式:G=E/3=2(C10+C01)
C01/C10=E1考试大论坛
K=d/2
d=(12μ)/(C10+C01)
得到牙周膜双参数超弹性MooneyRivlin模型:C10=0.0079,C01=0.0004,d=48.2
2、结果
建立的上颌第一磨牙及其支持组织的非线性三维有限元模型具有很高的几何相似性,结构完整,网格质量较好。建立的三维有限元模型共96875个10节点四面体单位,132838个节点:上颌第一磨牙40415个单位,58605个节点;牙周膜10258个单位,20602个节点;硬骨板12202个单位,24413个节点;密质骨4132个单位,8053个节点;松质骨29868个单位,44977个节点。牙齿全长20.1mm,腭根长12.0mm,近中根11.6mm,远中根10.9mm,近远中宽9.2mm,颊舌向宽8.4mm。
3、讨论
上颌第一磨牙结构纷乱,形态不规则,建立完整、精确、相似性高的三维有限元模型对计算结果的准确性至关重要。3DSS是高速高精度的产业级三维扫描丈量设备,接纳的是目前国际上最先进的结合结构光技术、相位丈量技术、计算机视觉技术的复合三维非接触式丈量技术,可以到达0.01mm的扫描精度,在数秒内即可完成对模型的高速高密度丈量,输出三维点云供进一步后期处理。逆向工程是凭据已经存在的产品模型,反向推生产品设计数据(包括设计图纸或数字模型)的过程。是将产品样件转化为三维模型的相关数字化技术和几何建模技术的总称。GeomagicStudio8是四大逆向工程专业软件之一,利用它可以在可视化的界面下对模型进行修改,大大缩短了建模时间,提高了建模的效率和可操纵性。将3DSS与先进的逆向工程技术相结合,可以制止人为滋扰,将扫描的点云数据直接重建为三维实体模型,并且精确度极高,细节表达完整,相似性好,为计算结果的准确性提供了包管。但是由于其仅能得到模型的外貌数据,应用范畴受到了一定水平的限制。 实验中我们得到了以下经验:①运用Geomagic的offset命令与ANSYS的overlap命令,找到了一条建立纷乱牙齿牙周膜及硬骨板的有效便捷之路;②在GeomagicStudio8中生成三维实体模型时,制止孕育产生一些相交成锐角的线,以提高后期的网格划分质量;③对模型差别的局部接纳差别的网格尺寸进行网格划分,在确保计算精度的前提下可以提高运算效率;④虽然。iges式样文件具有良好的软件接口兼容性,但在导入导出过程中仍会造成数据的丢失,所以要尽量制止模型以。iges式样重复的导入与导出。
在众多研究中,大多数学者常把牙周膜假设为均质、各向同性的线弹性质料[6-7]。但实际上,牙周膜是非均质、完全各向异性的非线性质料,这在少数学者的研究中得到了局部的考虑。牙周膜的非线性主要体现为粘弹性与超弹性,粘弹性主要是研究一定加载作用下,在牙周膜到达稳定状态前的这段时间内,其应力应变随时间的转变关系[8-10];当到达稳定状态后,应对牙周膜进行超弹性设定,以进行非线性应力剖析。本模型的建立主要是为了研究牙周膜到达稳定后的应力漫衍情况,所以对牙周膜进行了超弹性假设。
我们在前人研究的基础上实验运用3DSS进行扫描获得建模原始数据,并对模型进行细化,建立了包括牙齿、牙周膜、硬骨板、松质骨及密质骨的三维有限元模型;同时,在一定研究假设的情况下对牙周膜进行了非线性参数设定,在一定水平上提高了模型的仿生性,为进一步的生物力学研究奠定了良好的基础。
建筑问答网 - 会员服务 - 联系我们 - 广告服务 - 网站地图 - 专家团队 - 造价QQ群 - 3721k建筑网址导航